
The Case for an Intermediate Representation for
Programmable Data Planes

Muhammad Shahbaz and Nick Feamster
Princeton University

Abstract
Software-Defined Networking (SDN) switch vendors are interested
in extending switch data planes to support new and continuously
evolving network protocols (e.g., NVGRE, VXLAN). Numerous
commercial programmable data plane devices already enable a pro-
grammer to specify various aspects of the data plane including
packet parsing, actions, and the layout of packet processing on the
hardware device itself. Unlike OpenFlow-based devices, which only
expose a series of fixed match-action table (MAT) abstraction, these
specialized devices provide a more flexible abstraction for packet
processing. Despite the increased programmability that these devices
offer, however, the architecture of the target restricts the features that
can be exposed to the programmer. Similarly, existing languages
for programming the data planes in such devices (e.g., P4) assume
a specific computational model, resembling the architecture of the
device for which they are targeted for. Unfortunately, this model
leads to similar limitations as in OpenFlow, where the high-level
specification is coupled to the underlying device model.

In this paper, we introduce NetASM, an intermediate representa-
tion for programmable data planes. NetASM is a device-independent
language that is expressive enough to act as the target language for
compilers for high-level languages, yet low-level enough to be effi-
ciently assembled on various device architectures. It enables conven-
tional compiler optimization techniques to significantly improve the
performance and resource utilization of custom packet-processing
pipelines on a variety of targets.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks] Network Architecture and Design

General Terms: Algorithms; Design; Experimentation

Keywords: Software-Defined Networking (SDN); NetASM; Inter-
mediate Representation (IR); Programmable Data Planes

1 Introduction
Emerging chipsets and platforms that support programmable data
planes (e.g., RMT, Doppler, Corsa, and Flexpipe) enable increasingly
more fine-grained, flexible control over how the network device
processes packets. These platforms offer for defining custom packet
formats through specialized parsers, as well as ways to reconfigure
the processing pipeline itself (e.g., altering the number of stages,
adding state to various stages in the pipeline).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SOSR2015, June 17–18, 2015, Santa Clara, CA, USA
c© 2015 ACM. ISBN 978-1-4503-3451-8/15/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2774993.2775000

2"

IR:"NetASM'

P4' Click' Concurrent"
NetCore" …'

RMT' FPGA' CPU/OVS" …'

Front@End'

Back@End'
OpFmizaFons"

Figure 1: NetASM is an intermediate representation that compilers can use
to optimize packet processing pipelines from a variety of high-level languages
to a diversity of targets.

Yet, these devices remain difficult to program and configure, and
there is currently no good way to write a program that specifies
the configuration and layout of one of these custom packet pro-
cessing devices. Ultimately, as occurred in conventional software
engineering, we expect that network programmers will organize
their programs into reusable libraries and composable code so that
they can reuse these libraries to write more complex packet pro-
cessing programs. For example, one operator might write logic for
doing packet parsing, a second might write logic for an ACL and,
similarly, a third might write logic for an IPv4 router. These packet
processing modules will likely be reusable; they may also be in
entirely different high-level languages. As programmable devices
proliferate—each with potentially different high-level languages for
configuring them—programmers will need mechanisms for reusing
and composing these modules for a single hardware target.

Unfortunately, the use of multiple languages tends to make it
more challenging to achieve direct compilation to a hardware target.
For example, faced with a proliferation of high-level programming
languages (e.g., C, C#, Java, Python) compiler designers were faced
with the issue of how to compile these languages to different target
architectures (e.g., AMD, ARM, and Intel’s x86). Thus, instead of
compiling each language directly to a given target, designers de-
veloped an intermediate representation. The intermediate language
acted as a sweet-spot in dividing the compiler tasks into two phases:
(1) front-end and (2) back-end. The details of the high-level lan-
guage were confined to the front-end, and the details of the target
machine to the back-end.

In this paper, we introduce NetASM, an intermediate representa-
tion for network compilers that serves as the “narrow waist” between
the high-level languages that are beginning to emerge (e.g., P4) and
rapidly proliferating set of target hardware platforms, as shown in
Figure 1. The intermediate representation (IR) must be language-
and target-independent, it must be expressive enough to be produced
by language-specific front-ends, and it must be functional enough to
produce layouts for a diverse set of hardware targets. It must also
be structured in a way that allows for optimizing packet-processing

http://dx.doi.org/10.1145/2774993.2775000

1"

IR:"NetASM'

ETH+IP+…'' IPv4'ACL' TTL+CRC+…'

Parsing(Logic(Write(Back(
packet(packet*(

Figure 2: Compiling applications written in (potentially different) high-level
languages to NetASM.

pipelines for area, power, and latency, using both target-specific
and target-agnostic optimization techniques. Figure 2 shows how
applications written in high-level languages can be compiled down
into a single NetASM IR.

A significant advantage to a well-designed IR is the ability to op-
timize the layout of the resulting packet-processing program. Com-
piling programs that rely on composing reusable components and
libraries can result in inefficiencies, mainly resulting from redundant
operations. These redundancies often arise from either “dead code”
or as a side-effect of writing the program in a high-level language
that hides some of the low-level operations and the programmer has
no choice but to use the higher-level constructs. For example, in
P4, all processing relies on match-action tables, so a programmer
must use the MAT construct for performing an operation as simple
as loading a header field from memory. Programmers are not aware
of these low-level features and cannot eliminate the redundancies
themselves. In conventional software programs, these can lead to
high memory and register usage, and more CPU cycles. For the case
of programmable network data-planes, inefficiencies may result in
longer packet processing pipelines (and hence higher latency), larger
area on the hardware target, or more power consumption.

This paper presents the case for an intermediate representation for
compiling high-level packet processing description languages (e.g.,
Click, P4) to lower-level hardware targets. In presenting the need for
NetASM, we address two challenging questions. First, the language
must be both expressive enough to represent functions from a variety
of languages that a compiler can use to produce output for multiple
low-level data-plane targets. Section 2 describes the features of the
language in detail. Second, it should be structured in a way to take
advantage of existing frameworks for optimizing compilers, such
as data- and control-flow analysis [7]. In Section 3, we explain
how various optimizations both use and adapt existing optimizations
and data-flow analysis techniques to optimize a high-level packet-
processing program for area or latency; Section 4 evaluates these
optimizations. Section 5 discusses related work, and Section 6 con-
cludes with a summary and discussion of open research problems.

2 NetASM: An Intermediate Representation

NetASM instructions operate on state and produce a (modified) state.
These operations can either operate on per-packet state (i.e., state
that travels with the packet in the pipeline) or on persistent state (i.e.,
a table that is accessible from any stage in the pipeline). Persistent
state is common in many abstract machine models; we introduce a
new concept for an abstract machine model—per-packet state—to
enable pipelined parallelism (Section 2.1). Within this pipelined
execution model, we also enable both sequential and concurrent
execution, as well as a new construct that makes it possible for arbi-
trary sequences of pipeline stages to operate atomically on persistent
state (Section 2.2). In the sections below, we elaborate on these new
features and why they are useful for programmable network data

planes. Finally, we present the instruction set that we have designed
to operate on state and perform these execution modes (Section 2.3).

2.1 Persistent State and Per-Packet State
NetASM adopts a computational model that resembles a register ma-
chine [5], yet we adapt this conventional model in several important
ways. State in conventional register machines is always persistent.
Content stored in the memory or registers will remain unchanged
and will be available at each program point unless modified by some
instruction in the program. In personal computer (PC) systems, this
model reflects exactly what is happening; data is stored in RAM or
registers and will only be modified by an instruction at some point
in the program; otherwise, it will maintain its state for the entire
execution of the program. If an instruction stores some results in a
persistent state then that will immediately become available to all
the packets in the pipeline, unless the state is overwritten by some
other instruction in the program.

In contrast, in a network device, along with the persistent state
that is maintained across packets, there is also per-packet state that
is maintained as a packet traverses the device’s pipeline. In a fully-
pipelined program, each instruction will operate on a different packet
and set of header fields (or header set); at each stage, results are
written back to the packet and header fields, and then forwarded to
the next instruction in the program. Persistent and per-packet state
each provide benefits: persistent state makes it possible to maintain
state across multiple packets (e.g., for a stateful firewall or load
balancer), and per-packet state allows us to speed up execution by
running each stage of a packet processing pipeline in parallel.

To capture these two types of state behaviors, NetASM provides
instructions that operate on both persistent state and per-packet state.
Providing per-packet state as a native feature in the intermediate
representation allows it to express highly efficient pipelined data
planes, since different stages of the packet-processing pipeline can
operate on different packets in parallel. (The NetASM model differs
from conventional modes of state in other parallel systems, where
cores are operating in parallel but not as part of a pipeline where
packets with state are traversing.)

Instructions operating entirely on per-packet state in a NetASM
program can be executed in parallel without any side-effects. Op-
erations on persistent states, however, require careful analysis (e.g.,
data dependence analysis) of the program; parallelism is inferred by
adding redundant copies of the state element or by enabling control
to enforce atomic access to the state element. Conventional abstract
machine models for CPUs and even NPUs do not allow for this kind
of pipelining as they only operate on persistent state and have a
(default) sequential processing model, unlike the pipeline processing
model that NetASM provides.

2.2 Sequential and Concurrent Execution
NetASM instructions can be executed either sequentially or con-
currently. In sequential execution, each instruction in a NetASM
program is executed one after the other. Because packets may be
in different parts of the pipeline, these instructions may sometimes
be able to execute in parallel. If, for example, these instructions
operate on per-packet state, then it is possible to execute packets at
different stages of the pipeline in parallel. If, on the other hand, these
instructions access the same persistent state, the pipelined operations
must be divided into atomic modules, each of which accesses the
persistent state at different times.

Three NetASM instructions capture the necessary operations to
support the different types of execution on different types of network

Type Instruction
header ADD, RMV
state LD, ST, PUSH, POP
table LDt, STt, LKt, INCt

control-flow BR, JMP, LBL
arithmetic OP

group CNC, SEQ, ATM
special CTR, DRP, CRC, HSH
other ID, HLT

Table 1: Entire NetASM instruction set.

state: SEQ executes a block of instructions in sequence; packets
move through a pipelined set of instructions. Multiple packets may
be in the pipeline at any time, but each packet moves through the
instruction sequence one after the other. A CNC block executes all
instructions in a code block in parallel, and each instruction receives
a pointer to the persistent state. If instructions try to access the same
persistent state and are not in an ATM block will create a conflict.
An ATM block indicates that a set of instructions should execute
atomically, and thus any instructions within the block can share
persistent state. By default, NetASM assumes a sequential execution
model.

These three execution modes offer different benefits. Atomic
operations (ATM) make it possible to write modular code blocks
comprising multiple pipeline stages for target devices. It also allows
instructions to share persistent state, thus enabling stateful applica-
tions (e.g., stateful firewall). Similarly, these modes enable certain
optimizations for area, latency or power by offering different ways
to arrange various parts of the pipeline.

2.3 NetASM Instruction Set
The NetASM instruction set has only 23 instructions, as shown in
Table 1. A NetASM program is a list of finite set of instructions.
Using the NetASM primitives, a programmer can specify any kind
of data plane: a conventional register machine model is Turing
complete, and NetASM’s abstract machine model is an extension
of this basic register model. NetASM provides instructions for the
following operations: (1) load, (2) store, (3) computation, (4) branch,
(5) header (i.e., adding or removing headers in the header set), and
(6) special operations (e.g., checksum, hash).

3 Optimizations
Compilers often optimize programs expressed in intermediate for-
mats by rearranging instructions; by modeling NetASM after con-
ventional intermediate representations, we can take advantage of
some of the same types of optimizations that conventional compil-
ers use. Dead-code elimination, dead-store elimination, and code
motion are examples of such function-preserving (and semantics-
preserving) optimizations that compilers commonly apply. We first
briefly describe the data-flow analysis framework used in building
these optimizations. We will then consider optimizations that are in-
spired by conventional compilers and explain how we have adapted
them to the setting of programmable network data planes.

Throughout the rest of the paper—both in presenting examples
of optimizations and in evaluating them—we use the ACL-IPv4
benchmark. The logic for ACL and IPv4 is ported from the TTP
specification, hosted at the ONF organization on Github [13]. The
TTP specification only describes the match-action table (MAT) part
of the pipeline, so therefore we had to write the Ethernet, IPv4
and TCP/UDP parsing and write-back logic. The final program is

the composition of parsing, ACL-IPv4, and write-back logic. The
NetASM source code for this example is available on Github [1]. We
selected a real example from the ONF repository to emphasize that
opportunities for optimizations regularly arise in real-world network
packet-processing programs.

3.1 Data-Flow Analysis Framework
Data-flow analysis gathers information about a program to assist
with optimization; it refers to techniques that derive information
about the flow of data along program execution paths. The results
of data-flow analyses all have the same form. For each instruction
in the program they specify some property that must hold each time
that instruction is executed.

We implemented two new kinds of data-flow analysis techniques,
called field-reachability and field-usability analysis, for doing code-
motion and dead-store elimination transformations. NetASM uses
conventional optimization techniques in various ways: liveness anal-
ysis for dead-code elimination, reachability and reaching-definitions
analysis for code motion, and usability analysis for dead-store elimi-
nation.

In field-reachability analysis, the compiler determines which
fields are reachable at a program point p through some path prior to
that point. In other words, we say that field f reaches the program
point p if there is a path immediately following the instruction where
the field f was last used. For example, if we look at the following
code listing:

150 OP tcp_offset, tcp_offset, Add, 16
151 LD tcp_dst (tcp_offset, 16)
152 RMV tcp_offset
153 LD has_tcp, 1

tcp offset is reachable at the entry of RMV instruction, at line
152, but not at the entrance of the LD instruction, at line 153.

The goal of field-usability analysis is to determine whether given
field f created at point p is later used anywhere along the program
path from p. For example, looking back at the code listing, above,
we can see that field tcp offset is not used after the RMV in-
struction, at line 152, but is used at the exit of the LD instruction at
line 151. The field-usability analysis gathers these facts about the
program which can then be used in removing dead fields at certain
points in the program.

The liveness and reaching-definitions analysis are one of the most
commonly used data-flow analysis with applications for various
optimizations like dead-code elimination and constant propagation.
NetASM implements these analyses in same way as in conventional
compilers [7].

3.2 Dead-Code Elimination
There are various instances when an instruction can be considered
“dead”. In this paper, we apply the NetASM instruction set to show
several examples where an instruction is declared dead can thus
be removed from the program, thus reducing the overall area and
latency.

One case where dead code arises is the presence of dangling
fields (i.e., fields that have been added in the instruction set but
have never been used anywhere inside the code). Although clearly
a programmer would never deliberately add fields to leave them
unused, other optimizations can lead to such situations where the
instruction previously using a field f is declared dead. To find dead
fields in the program, we apply field-usability analysis.

Similarly, we can remove the accompanying RMV instruction
from the code once the field f is no longer present in the header set.

To remove the RMV instruction the compiler must ensure that the
field f that the RMV instruction is removing is not reachable from
any path in the program prior to that RMV instruction.

Finally, instructions that assign some new value to a field, such as
LD, OP, LDt, LKt, CRC, and HSH, can be declared dead if the field
to which they assign some value to is not used anywhere later in
the path. Standard liveness analysis can identify these cases. In the
ACL-IPv4 example, the values of eth dst and eth src loaded
at line 106 and 107, respectively, are never used throughout the
remainder of the program and are overwritten again at line 274 and
275.

106 LD eth_dst, (0, 48)
107 LD eth_src, (48, 48)

Thus, the values loaded by the instructions at line 106 and 107, can
be discarded from the program as dead-code.

3.3 Dead-Store Elimination
In NetASM, a programmer who adds a field to the header set need
not manually remove it. A field will be valid and visible until the
program explicitly issues an RMV instruction. Determining the opti-
mal place to remove a field may be cumbersome for a programmer.
This task becomes even more complex as programs get larger. (This
is analogous to memory management in C.) Instead of asking the
programmer to manage the removal of header fields from the header
set, NetASM implements a new optimization, dead-store elimination.
Using the field usability analysis, the compiler can determine when
in the program a field is no longer used. At that point, the compiler
adds a new RMV instruction to remove the field from the header set
to ensure that the field is no longer visible to the rest of the program
after that point. The code excerpt below from the same ACL-IPv4
example shows an opportunity for dead-store elimination.

150 OP tcp_offset, tcp_offset, Add, 16
151 LD tcp_dst (tcp_offset, 16)
152 LD has_tcp, 1

After line 151, the program no longer needs tcp offset field and,
thus, the field can be removed from the header set, as shown in the
following example.

OP tcp_offset, tcp_offset, Add, 16
LD tcp_dst (tcp_offset, 16)
RMV tcp_offset
LD has_tcp, 1

3.4 Code Motion
Instructions might add a field to the header set long before the field
is actually used. Doing so can create readable and manageable code;
for example, one may want to add all fields of a header first before
writing the rest of the program. A common example where this
occurs is writing a parsing logic in the program: A programmer first
adds fields to the header set and then loads them with the content of
the packet (using the LD instruction).

As with inserting RMV instructions, it may be difficult for a pro-
grammer to manually determine an optimal place in the program to
add a field to the header set. NetASM thus provides another opti-
mization called ADD code motion that moves the ADD instructions
closer to the point where they are first used. The compiler performs
this operation using both field reachability and reaching-definitions
analysis. Field reachability analysis indicates points in the program
where a field was first used by an instruction. Using this information,
the compiler moves the ADD instruction immediately before that
point. This operation requires knowing the size of the field needed
by the ADD instruction when adding the field in the header set;

reaching-definition analysis provides this information. The compiler
scans ADD instructions, and the compiler selects the one matching
the given field. Consider a code excerpt from the same ACL-IPv4
example below:

47 ADD eth_dst, 48
48 ADD eth_src, 48
49 ADD eth_type, 16

106 LD eth_dst, (0, 48)
107 LD eth_src, (48, 48)
108 LD eth_type, (96, 16)

Lines 47–49 add Ethernet header fields eth dst, eth src, and
eth type to the header set, first. Later, lines 106–108 load values
from the packet at given offsets into the header fields. In this case,
all load operations will see the three header fields in their header set
and thus incurring more cost. The compiler can reduce overall cost
by moving the ADD instructions closer to the load operations where
the header fields are first used, as shown below:

ADD eth_dst, 48
LD eth_dst, (0, 48)
ADD eth_src, 48
LD eth_src, (48, 48)
ADD eth_type, 16
LD eth_type, (96, 16)

In this case, the first LD instruction will now only have eth dst in
its header set.

RMV instructions that a programmer adds can be moved to earlier
locations in the program (i.e., just after the last use of the field).
The compiler performs this operation using the same field usability
analysis without including the RMV instructions, determining the
last-used point for fields as the instruction just before the corre-
sponding RMV instruction. Using this information, the compiler
can insert new RMV instructions just after those instructions. We
call this optimization RMV code motion.

4 Preliminary Evaluation
In this section, we perform a preliminary evaluation of the benefits
of NetASM’s optimizations by evaluating them against our running
ACL-IPv4 example. We first introduce and justify the abstract cost
model that we use to evaluate the optimizations; we then compute
the benefits of the optimizations using this cost model.

4.1 Cost Model
We evaluate NetASM based on an abstract cost model that we de-
velop; we use this model to calculate the abstract area and latency
of a NetASM program. The values of area and latency simply have
weights that reflect the relative costs of each instruction; higher
area and latency costs reflect more area usage and higher latency,
respectively.
Area. The area cost (Ai) for each instruction (i) is a function of the
sum of the size of fields (f) in its header set (Hi), its type, and the
operation it performs. To model the effect of instruction’s type and
the operation it performs, we assign each instruction a weighing
factor (wi). Following equation shows how wi is calculated for
NetASM instructions.

wi =

4 : (i = STt | LKt) &
(i.table.type= CAM)

3 : (i = LDt | STt | LKt |INCt) &
(i.table.type= RAM)

2 : (i = LD & i.source = Location) |
(i = OP & i.operator = (Mul|Div))

1 : otherwise

For example, in the case of load (LD) instruction, the cost of the
instruction is doubled if the source operand is of type Location (i.e.,

0

5

10

15

20

25

30

35

ACM RCM DCE Combined

%
 Im

pr
ov

em
en

t
Area Latency

Figure 3: Improvements in area and latency of the ACL-IPv4 application
when different combinations of optimizations are applied.

we are loading the value from a packet), so we assign a weighing
factor (wi) of 2. Similarly, for the OP instruction, wi is 2 for multi-
plications and divisions. We assign table instructions weight 3 or 4
depending on whether they are operating on RAM or CAM tables,
respectively. For all other cases wi is 1. Thus, cost of area for an
instruction is: Ai = wi · (∑ f∈Hi

sizeo f (f)), where sizeo f returns the
size of field (f) in bits. The cost of group instructions (i.e., SEQ,
CNC, and ATM) is the sum of the cost of the input code provided
with that group instruction.

The cost of a table (t) is a function of the product of its size (s)
and width, table type, and the field’s match type. The width of a
table is the sum of the size of fields in its field set (Ft). To take into
account the effect of table type and field’s match type on the actual
cost, we assign a weighing factor (wt) with each table,

wt =

{
2 : t.type = CAM

1 : t.type = RAM

and (w f) with each field in the table.

w f =

3 : f .match type = Ternary

2 : f .match type = Binary

1 : otherwise

Thus, we compute the area cost of a table as: At = s · wt ·
(∑ f∈Ft

(sizeo f (f) ·w f)). The total area is the sum of all instruc-
tions and tables present in the program: A = (∑i∈I Ai +∑t∈T At).
Latency. The cost of latency depends on the complexity of the
operation that an instruction performs and is given by the following
formula: Li = wi. The weighing factor indicates the latency that an
instruction will have. For example, consider again the load (LD)
instruction; if the source operand is Location, then its latency is 2;
otherwise, it will be 1. Similarly, if a table instruction is using CAM
table, its latency is 4; otherwise, it will be 3. The total latency is the
sum of all instructions present in the program i.e., L = ∑i∈I Li.

The ADD, RMV, LBL, and HLT instructions do not add to the
area or latency cost of any program. An optimizer can then use this
model to optimize the program for either area, latency or both at an
abstract (i.e., target-independent) level.

4.2 How Well Do the Optimizations Work?
We evaluated the application against four different combinations of
optimizations and measured the improvement in area and latency
with respect to the baseline values of the original program. We
also measured the time it took to complete the optimizations. We

ACM RCM DCE Combined
Time (sec) 0.29 0.24 0.32 0.64

Table 2: Optimizations Timing.

calculated area and latency using the cost model from Section 4.1.
The baseline area and latency for the ACL-IPv4 program are 47,470
bits and 127 cycles, respectively.

Figure 3 shows the improvements for the ACL-IPv4 example as
a result of applying various compiler optimizations. The compiler
clearly achieves the largest improvements when the ADD code-
motion (ACM), RMV code-motion (RCM), and dead-code elimina-
tion (DCE) are applied together: There is a 40% improvement in the
final area consumed by the application, and a 26% improvement in
latency.

The ACM and RCM optimizations only affect the area, as these
optimizations only try to eliminate redundant use of header fields,
and do not actually remove any dead code. Whereas, the DCE
optimization actually removes redundant code from the program,
thus, giving improvements in both area and latency of the program.
Optimizing the code using ACM, RCM, and DCE took only 0.64
seconds (Table 2).

5 Related Work
Chipsets and hardware that support flexible and programmable data
planes have recently proliferated. For example, Intel’s FlexPipe ar-
chitecture [9] supports programmable packet parsing and operations
on fields using MATs. The RMT [4] is an architecture for a flexible
packet processor that has a multi-stage MAT pipeline. Corsa [6]
and Algo-Logic [2] have announced fully programmable network
devices using Field Programmable Gate Arrays (FPGAs). Each of
these targets currently has its own mechanisms for specifying and
programming the hardware data plane. NetASM aims to provide an
intermediate representation for compilation to any of these targets.

The advent of programmable hardware has also brought new pro-
gramming languages to the fore. P4 [3] is a declarative language
for expressing how packets are processed in the data plane using
a forwarding model consisting of packet parser and MAT stages.
P4 allows configuration of chipsets with exclusively programmable
MATs, but it is not sufficient for other architectures that do not con-
form to the match-action paradigm. POF [12] provides a generic
flow instruction set, but it does not support execution modes needed
to efficiently compile a program to targets with different architec-
tures. CNC [10] is a typed language for specifying routing policies
and control flow using MATs. SDNet [11] provides a programming
language that defines how an FPGA-based switch should process
packets. OF-PI proposes an SDN ecosystem and a language for a spe-
cific type of abstract forwarding model based on MATs [8]. Despite
these representations and hardware architectures, no compiler exists
that can take an arbitrary high-level language for programmable data
planes and compile to an arbitrary target. Some of these languages
will be more suitable for one particular architecture than another.
For example, P4 uses an abstract forwarding model that is inspired
by the RMT architecture and, thus, provides a relatively direct com-
pilation path for RMT. In the case of other architectures like Corsa
and Algo-Logic, compilation from P4 might not be straightforward.

6 Summary and Future Work
We presented the case for a new intermediate representation, Net-
ASM, that enables a compiler to optimize a high-level packet process-
ing program for a diversity of targets. NetASM divides data-plane

functions into small primitive operations, enables high-level lan-
guages to provide more abstract data plane representations, and
provides an efficient assembly of these primitives to different target
devices. NetASM uses a target-independent machine model and
cost semantics to optimize the program for metrics such as area and
latency.

Our research agenda includes completing the language specifica-
tion of NetASM and building a compiler framework using different
packet-processing specification languages (e.g., P4) and data-plane
targets. We will explore various opportunities for optimizations that
can be applied across different classes of network device architec-
tures. This will lead to better architectural explorations and, we
believe a time will come when programming in high-level languages
will become a norm and the performance of a switch would not only
be determined by its raw speed but also by how well compilers can
exploit its features.

Acknowledgments
The authors wish to thank Jennifer Rexford, David Walker, and
Cole Schlesinger for helpful early discussions; Srinivas Narayana,
Jennifer Rexford, and the anonymous SOSR reviewers for their
feedback on earlier versions of this paper. This work was supported
by NSF Award CNS-1539920.

References
[1] NetASM: ACL-IPv4-Example. github.com/NetASM/

ACL-IPv4-Example. (Cited on page 3.)

[2] High Performance GDN 100G Top-of-Rack (TOR) Switch for Datacen-
ter. www.algo-logic.com/gdn-100g-tor-switch, 2014.
(Cited on page 5.)

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4:

Programming Protocol-independent Packet Processors. SIGCOMM
Comput. Commun. Rev., 44(3):87–95, July 2014. (Cited on page 5.)

[4] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for SDN. In Pro-
ceedings of the ACM SIGCOMM 2013 conference on SIGCOMM,
pages 99–110. ACM, 2013. (Cited on page 5.)

[5] A. W. Burks, H. H. Goldstine, and J. Von Neumann. Preliminary
discussion of the logical design of an electronic computing instrument.
Springer, 1982. (Cited on page 2.)

[6] Corsa Technology: SDN Data Planes. www.corsa.com, 2014.
(Cited on page 5.)

[7] M. Lam, R. Sethi, J. Ullman, and A. Aho. Compilers: Principles,
techniques, and tools, 2006. (Cited on pages 2 and 3.)

[8] OF-PI: A Protocol Independent Layer. www.opennetworking.
org/images/stories/downloads/sdn-resources/
white-papers/OF-PI__A_Protocol_Independent_
Layer_for_OpenFlow_v1-1.pdf, 2014. (Cited on page 5.)

[9] R. Ozdag. Intel R© Ethernet Switch FM6000 Series-Software Defined
Networking. See goo.gl/AnvOvX, 2012. (Cited on page 5.)

[10] C. Schlesinger, M. Greenberg, and D. Walker. Concurrent NetCore:
From Policies to Pipelines. (Cited on page 5.)

[11] SDNet: Software Defined Specification Environment for
Networking. www.xilinx.com/applications/
wired-communications/sdnet.html, 2014. (Cited on
page 5.)

[12] H. Song. Protocol-oblivious forwarding: Unleash the power of sdn
through a future-proof forwarding plane. In Proceedings of the sec-
ond ACM SIGCOMM workshop on Hot topics in software defined
networking, pages 127–132. ACM, 2013. (Cited on page 5.)

[13] Table Type Patterns (TTP) Repository. github.com/
OpenNetworkingFoundation/TTP_Repository. (Cited on
page 3.)

github.com/NetASM/ACL-IPv4-Example
github.com/NetASM/ACL-IPv4-Example
www.algo-logic.com/gdn-100g-tor-switch
www.corsa.com
www.opennetworking.org/images/stories/downloads/sdn-resources /white-papers/OF-PI__A_Protocol_Independent_Layer_for_OpenFlow_v1-1.pdf
www.opennetworking.org/images/stories/downloads/sdn-resources /white-papers/OF-PI__A_Protocol_Independent_Layer_for_OpenFlow_v1-1.pdf
www.opennetworking.org/images/stories/downloads/sdn-resources /white-papers/OF-PI__A_Protocol_Independent_Layer_for_OpenFlow_v1-1.pdf
www.opennetworking.org/images/stories/downloads/sdn-resources /white-papers/OF-PI__A_Protocol_Independent_Layer_for_OpenFlow_v1-1.pdf
www.xilinx.com/applications/wired-communications/sdnet.html
www.xilinx.com/applications/wired-communications/sdnet.html
github.com/OpenNetworkingFoundation/TTP_Repository
github.com/OpenNetworkingFoundation/TTP_Repository

	Introduction
	NetASM: An Intermediate Representation
	Persistent State and Per-Packet State
	Sequential and Concurrent Execution
	NetASM Instruction Set

	Optimizations
	Data-Flow Analysis Framework
	Dead-Code Elimination
	Dead-Store Elimination
	Code Motion

	Preliminary Evaluation
	Cost Model
	How Well Do the Optimizations Work?

	Related Work
	Summary and Future Work

